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Centre of mass motion in non-relativistic quantum 
electrodynamics 
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ACT 2600. Australia 

Received 28 June 1976, in final form 1 September 1976 

Abstract. Motion of the centres of mass of stable aggregates of charged particles is allowed 
for in the non-relativistic quantum theory of radiation by treating the coordinates and 
momenta of the nuclei along with those of the electrons as dynamical variables. (i) The 
quantum electrodynamical atomic field equations for the microscopic electric displacement 
vector d and magnetic field h are presented with the effects (ionic, free electronic and 
Rontgen currents) of arbitrary non-relativistic motion of the centres of mass of the stable 
aggregates included. The atomic field equations are derived from the Maxwell-Lorentz 
equations for the microscopic electric field e and magnetic field b that follow from use in the 
Heisenberg equations of motion of the conventional (minimal-coupling) Hamiltonian 
pertaining to a first-quantized system of electrons and nuclei. Here the stable aggregates 
may be ions, free electrons, atoms or molecules and, as such, need not be electrically neutral. 
(ii) For systems composed of molecules (or atoms) that are electrically neutral the 
multipolar Hamiltonian is obtained by carrying out the Power-Zienau-Woolley transfor- 
mation on the coordinates and momenta of the nuclei as well as on those of the electrons; 
terms dependingon the motion of the centre of mass of each molecule then appear explicitly 
in the Hamiltonian. These include a term representing the energy in the magnetic induction 
field of the polarization- and molecular velocity-dependent magnetization that is associated 
with the Rontgen current. 

It is pointed out that the order of the operators, for example in the expression for the 
magnetization field, is completely prescribed by the formalism. It is furthermore 
emphasized that the multipolar Hamiltonian should, irrespectively of the fixity or mobility 
of the nuclei, be written as a functional of the vector potential a and its canonically 
conjugate field -(1/4m)dL, rather than of a and - (1/4m)eL,  as is often done, since this 
latter procedure leads to incorrect equations of motion. 

The relaxation of the fixed-nuclei constraint makes provision for translational motion of 
all the stable aggregates and for vibrational and rotational degrees of freedom of the nuclear 
frameworks of the molecules, but for the most part only the centre of mass motion is 
considered in detail. The separation of the translational motion from the internal motion 
and the explicit multipolar expansions in terms of internal coohhnates and momenta are 
illustrated, however, by consideration of a two-particle neutral system (hydrogen atom). 

1. Introduction and summary 

This article contains an exposition of some aspects of the non-relativistic quantum 
theory of radiation that merit consideration when the coordinates and momenta of all 
material particles (nuclei as well as electrons) are treated on an equal footing as 
dynamical variables, so that the coordinates of the centre of mass and the components 
of the total momentum of each of the distinct stable aggregates into which the whole 
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collection of particles is supposed to be partitioned are also dynamical variables. The 
formalism outlined here in addition to giving the complete scheme of atomic field 
equations for an ensemble of ions, free electrons, atoms or molecules also comprises the 
multipolar Hamiltonian for systems composed solely of electrically neutral atoms or 
molecules, and is capable of dealing with effects due specifically to motion of the nuclei, 
such as the Doppler effect or the recoil of an atom or molecule that occurs when photons 
are emitted, scattered or absorbed. 

The dynamical system consisting of the quantized radiation field in interaction with 
an arbitrary set of electrons and nuclei may be characterized (Fermi 1932, Heitler 1954, 
Dirac 1958, Kramers 1964, Power 1964) by the minimal-coupling Hamiltonian 

X = 
1 I [ ( 4 ~ c i P ( r ) ) ~  + (curl ~ ( r ) ) ~ ]  d3r 

together with the equal-time canonical commutators, of which only the following are 
possibly non-vanishing: 

The particle labelled a has charge ea, mass ma, position operator qa and conjugate 
momentum pa, while the vector potential 4 ( r )  is the ‘coordinate’ of the radiation field 
and 9 ( r )  is its conjugate momentum. Both 4 and 9 are transverse fields (Coulomb 
gauge), in agreement with the appearance of the transverse delta dyadic (Power 1964) 
on the right-hand side of equation (1.3), and in terms of 4 the transverse electric and the 
magnetic induction fields are given by 

1 

C 
ei(r) = - -u(r ) ,  b(r)  =curl 4 ( r ) .  (1.4) 

The equal-time commutators and the Hamiltonian X characterize the system in the 
sense that knowledge of these is sufficient for explicitly deriving the Heisenberg 
equation of motion 

1 h=-[a, X ]  
ih 

for any dynamical variable 0, which is a function of the canonical coordinates and 
momenta. In particular, for the coordinates and momenta themselves the Heisenberg 
equations lead to the operator form of the Maxwell-Lorentz equations for the micro- 
scopic fields e and b as well as of Newton’s law for the particles under the influence of 
the Lorentz force. The sources for e and 6 are the total charge and current densities due 
to all the charged particles. In the classical theory (de Groot 1969, de Groot and 
Suttorp 1972) those of the Maxwell-Lorentz equations that involve sources can be 
recast into equations-the so called atomic field equations-for the microscopic electric 
displacement vector d and magnetic field It whose sources are the ionic and free 
electronic charges and currents only. This is most easily done by relating the bound 
charge and current densities to the polarization and magnetization fields through the 
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use of certain distribution identities (Power and Thirunamachandran 1971). Semiclassi- 
cal treatments of the atomic field equations have been given by de Groot and Suttorp 
(1972) and by Babiker et a1 (1973). In 02 of this paper an analogous procedure in the 
context of quantum electrodynamics is carried out. Babiker er a1 (1974) using the 
fixed-nuclei approximation and a second-quantized formalism to describe the electrons 
have considered within a quantum electrodynamical framework the atomic field 
equations for neutral atoms or molecules. The present paper is restricted to first- 
quantization of the particles but allows for motion of the nuclei. When the particle 
coordinates are quantum mechanical operators rather than c-numbers, two of the three 
distribution relations given by Power and Thirunamachandran (1971) are no longer 
generally valid as kinematical identities. However, they may be shown to hold (in a 
symmetrized form) as dynamical relations when the time derivatives are calculated as in 
equation (1.5) and the Hamiltonian is given by equation (l . l) ,  and with their aid are 
derived the quantum electrodynamical atomic field equations with the effects (ionic, 
free electronic and Rontgen currents) of arbitrary non-relativistic motion of the centres 
of mass of the stable aggregates included. 

If the material particles can be grouped into non-overlapping and electrically 
neutral atoms or molecules, then new coordinates and momenta may be introduced so 
as to render the Hamiltonian 2 of equation (1.1) dependent on the electromagnetic 
fields rather than on the vector potential and so as to eliminate from it the instantaneous 
intermolecular Coulombic interaction. Each molecule then interacts through its mul- 
tipole moments with the tranverse fields and only through them, and hence in a purely 
retarded fashion, with the other molecules. The new coordinates and momenta are 
obtained from the old by a canonical transformation that was first given by Power and 
Zienau (1959) and has been generalized by Woolley (1971, 1975) and others (Babiker 
eta1 1974, Babiker 1975a, b). In most of these works the nuclei have been regarded as 
being fixed in the observer’s reference frame. Woolley (1971), while not regarding the 
nuclei as fixed, assumed that the centre of mass of each molecule is always stationary. In 
0 3 the Power-Zienau-Woolley transformation is carried out on the coordinates and 
momenta of the nuclei as well as on those of the electrons and in such a fashion that 
terms depending on the motion of the centres of mass appear explicitly in the 
Hamiltonian. These include a term representing the energy in the magnetic induction 
field of a polarization- and molecular velocity-dependent magnetization whose curl is 
l /c  times the Rontgen current density and which is well known classically (de Groot 
1969). Analogous terms arising from a contribution to the electric polarization from a 
moving magnetization are of order u’/c’ (U is the molecular speed) times the usual 
electric polarization term and, having a purely relativistic origin, do not appear in the 
treatment given here. The order of the operators in the expression for the multipolar 
Hamiltonian is prescribed by the canonical transformation. Thus the symmetrization of 
the magnetization field that makes it Hermitian does not have to be imposed as a 
separate assumption. Insertion of the multipolar Hamiltonian in the Heisenberg 
equation (1.5) for the vector potential shows that the new momentum conjugate to a is 
-(1/4.rrc)di and hence that it is d l  rather than e’ that should appear in this Hamil- 
tonian when written as a functional of the electromagnetic fields. This conclusion is 
valid generally and has nothing to do with the fixity or mobility of the nuclei. The 
atomic field equation that connects h and d’ follows directly, that is without use of the 
distribution relations, from the Heisenberg equation for the new field momentum. This 
was the method by which it was derived in the paper by Babiker et al(1974) referred to 
above. Since the multipolar Hamiltonian is applicable only to neutral systems, an 
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atomic field equation obtained through its use must likewise be restricted to materials 
from which ions and free electrons are absent, but it may include the effect of the 
Rontgen current when, as here, each neutral atom or molecule as a whole is movable. 

The relaxation of the fixed-nuclei constraint makes provision not only for transla- 
tional motion of all the stable aggregates but also, insofar as it is meaningful to separate 
the nuclear and electronic motions, for vibrational and rotational degrees of freedom of 
the nuclear frameworks of the molecules. The detailed specification of the internal 
coordinate systems will not be given here. However, a simple illustration of the 
separation of the centre of mass motion from the internal motion and the explicit 
multipolar expansions in terms of internal coordinates and momenta is afforded by a 
two-particle system (hydrogen atom) and this will be discussed in 0 3.3. 

2. Atomic field equations 

To begin the derivation of the atomic field equations the Heisenberg equations for the 
coordinates and momenta are first written down and are shown to lead to Newton's law 
with the Lorentz force and to the Maxwell-Lorentz field equations. From the latter the 
atomic field equations are obtained with the aid of the distribution relations; these are 
listed and their validity in a quantum mechanical context is commented on in an 
appendix. The Schrodinger picture will be used throughout, so that, there being no 
external fields, all operators are constant in time. The time derivative of an operator 52 
is then defined by equation ( 1 . 5 )  and is such that 

for any two solutions of the time-dependent Schrodinger equation 

2.1. Heisenberg equations with minimal-coupling Hamiltonian 

In the Hamiltonian formalism relations between the operators other than those given in 
equations (1 .1)  to (1.3) must be derived from the equations of motion. However, the 
restrictions div Q = 0 and div&P= 0 can be imposed from the outset, if in application of 
Hamilton's principle the variations of a and B also are circumscribed by the transver- 
sality condition (Power 1964). In addition, and as a consequence of the Coulomb 
gauge, the transverse fields are defined in terms of the vector potential by equations 
(1.4) and the longitudinal electric field is a definite function of the particle coordinates: 

(2.3) 

For the vector potential evaluated at a field point r the equation of motion is 
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since 9 is transverse. Similarly, since a is transverse, the equation for@(r) is 

1 
@i(r) = --(curl curl a(r)) ,  +I L(paj -e"aj(qa))6$(r-q01). c (2.5) 

47r mac 

If a is evaluated at a particle point qa, there is an extra term in its time derivative, and 
then 

The equations for the particle coordinates and 

and 

momenta are, respectively, 

Finally, the time derivative of the longitudinal electric field evaluated at a field point is, 
from equation (2.3), 

where the expression 

at!.(+ ---.a 1 1  -E 1 a2 1 
47r ' I r  477 ari arj r 

for the longitudinal delta dyadic has been used. 

V (2.10) 

2.2. Maxwell-Lorentz equations and Newton's law 

Because of the relations (1.4) and the Coulomb gauge condition the source-free 
Maxwell-Lorentz equations 

1 .  
div b = 0, curl e'= - - b  (2.1 1) 

c 

are identically satisfied. Furthermore, the divergence of the longitudinal electric field is 
given immediately from equation (2.3) as 

dive"(,) = 47r 1 ea 8 ( r - q a ) .  
01 

(2.12) 

The expression (2.9) for the time derivative of this field leads, in view of equation (2.7), 
to 

O = - j +  47r /I 1.11 e 
c c  

(2.13) 
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where the longitudinal current density is given by 

j l ( r )  = 4 a ea( da,a!j(r -qa)  + alij(r -qa ) 4 , ) .  (2.14) 

The transverse counterpart of equation (2.13) follows .,om the equations of motion 
(2.4), (2.5) and (2.7). Thus 

1 47r 
T i i i ( r )  = -(curl curl a(r))i +-E eadaj8$(r-qa) 
C C a  

which, in conjunction with equations (1.4), gives 

curl b =-jL+-$ 47r 1 
c c 

(2.15) 

(2.16) 

where the transverse current density is 

j ' ( r )=C eadajai(r-qe). (2.17) 

In summary, the Maxwell-Lorentz field equations, their longitudinal and transverse 
parts being written separately, are 

div e" = 47rp (2.18) 

a 

1 .  

C 
curl e'= -- b 

div b = 0 

(2.19) 

(2.20) 

(2.21a) 

(2.21b) 

and are valid as operator equations with the charge and current density operators 

(2.22) 

(2.23) 

The operator equation of motion for the material particles under the influence of the 
electromagnetic fields is obtained from equations (2.6) to (2.8) and is 

This may be written as 

(2.25) 

in which form it is recognizable as Newton's law with the Lorentz force. 
The derivation of the equations of motion has been gone into in some detail in order 

to emphasize that there is no ambiguity in the order of the non-commuting operators pai 
and qai. Because of the transverse nature of a this order is immaterial in the 
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Hamiltonian itself or in, for example, equation (2.8), and because of the transverse 
nature of S$(r) it is immaterial also in the expression for the transverse current density. 
In the expressions for the longitudinal current density and for the Lorentz force the 
order is significant but is completely prescribed by the formalism. There is thus no need 
here to take a ‘symmetric average’ as is often done when ambiguities as to the order of 
operators arise on going over from a classical to a quantum theory. 

2.3. Atomic field equations 

It is now supposed that the collection of particles can be regarded as being made up of 
distinct stable aggregates (free electrons, ions, neutral atoms or neutral molecules). The 
aggregates are labelled 5 and their constituent particles a@). Thus particle a(() has 
mass charge e,(g), position operator qQ(g) and momentum operator pace=,. As 
mentioned in the introduction, the atomic field equations that involve sources relate the 
microscopic electric displacement and magnetic field vectors to the ionic and free 
electronic charges and currents. These charges and currents are associated with a 
privileged ‘central point’ R(5) in aggregate 6 and similarly the polarization and 
magnetization fields, in terms of which the bound charges and currents are incorporated 
into the scheme, are defined as expansions about I?((). Here this privileged point is 
consistently taken to be the centre of mass of the aggregate: 

(2.26) 

and, being a function of the dynamical variables qa([), is itself a dynamical variable. In 
equation (2.26) M(4) is the total mass of aggregate 5. The total momentum of the 
aggregate, which is given by 

(2.27) 

is canonically conjugate to R([), as may easily be verified from equation (1.2). 

machandran 1971) by 
The electric polarization field of aggregate 5 is defined (Power and Thiruna- 

(2.28) 

Because of the choice of R(5) made here, this field vanishes if the ‘aggregate’ is merely a 
free electron or an ion consisting of a single nucleus. For the position and the centre of 
mass of a point object necessarily coincide. The total polarization field is defined by 

p ( r )  = c P(g)(r ) .  (2.29) 

With the aid of the distribution relation (A. 1) the first Maxwell-Lorentz equation may 
now be written 

5 

div e”(r)  = 4.n c eacs,S(r-R(&)) 
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where Q(5) is the total charge of aggregate 5. If the microscopic electric displacement 
vector d is introduced as 

(2.31) d = e + 4lrp, 

then equation (2.30) becomes 

d i v d " = 4 ~  C Q(Os(r-R(O)  =4r(~iontc+~rree), (2.32) 

which shows that the sources of d are the 'true' (ionic and free electronic) charges, 
whereas those of e include the polarization charges whose density is -divp". Equation 
(2.32) is the first of the atomic field equations. 

In terms of the contributions from the separate aggregates 5 the longitudinal current 
density of equation (2.14) is 

5 

(2.33) 

The distribution relation (A.2) then gives 

= (i ibnic+iCree)i  +@!. (2.34) 
Insertion of this into equation (2.216) leads to the atomic field equation (2.35) 
corresponding to the longitudinal part of the fourth Maxwell-Lorentz equation: 

0 =-((iibnlc+jtree) 41r I1 +-d". 1 .  
c c 

(2.35) 

The transverse part of this equation is obtained with the help of the relation (A.3). 
Firstly, the transverse current density is 

(2.36) .I- .I 
I -]ionic + i i e e  +ri' +C curl mtotal 

where the 'true' transverse current density is given by 

Q k n i c + i i e e ) t  = 0(5)&(5P$(r-R(5) )  (2.37) 
5 

and the total magnetization field by 
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Substitution of the expression (2.36) for j' in the transverse part of the fourth 
Maxwell-Lorentz equation then yields the atomic field equation 

4T 1 .  
curl h =-((jinic+jiee)+-dL 

C C 
(2.39) 

with the auxiliary magnetic field h being defined (de Groot 1969) by 

h = b - 47rmtotal. (2.40) 

The total current density is given, from equations (2.34) and (2.36), by 

and is the sum of the ionic, free electronic, polarization and total magnetization current 
densities. The last of these includes the Rontgen current density 

(2.42) 

which arises from the contribution to the total magnetization field from the polarization 
fields of the moving aggregates. 

Finally, since the source-free Maxwell-Lorentz equations are unaffected by the 
introduction of the polarization and magnetization fields, the complete scheme of 
quantum electrodynamical atomic field equations may now be gathered together to 
read 

div d" = 4~(~ ion ic  + Prree) (2.43) 

curl e'= - -b  (2.44) 

div b = 0 (2.45) 

1 .  
C 

4.n 1 .  
curl h = - ( j ~ n l c + j ~ e e ) + - d l  

C C 

O = - ( j ! '  47 . + j !  ) + - d "  1 .  iomc ree 
C C 

(2.46a) 

(2,466) 

3. Multipolar Hamiltonian 

3.1. The Power-Zienau- Woolley transformation 

In this section the Power-Zienau-Woolley transformation is carried out on the 
Hamiltonian of equation (1.1). If,  as will now be assumed, the stable aggregates 6 are 
electrically neutral, then this transformation makes the Hamiltonian depend directly on 
the electromagnetic fields rather than on the vector potential and also eliminates the 
instantaneous interaggregate Coulombic interaction. When the labels of the separate 
aggregates (henceforth called molecules) are explicitly introduced, the Hamiltonian 
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may be written 

where the last two terms give the intermolecular and intramolecular Coulombic 
energies, respectively. %' is to be expressed in terms of new variables fi obtained from 
the old through the canonical transformation 

a = uiiu-' (3.2) 

with the unitary operator U being given by 

U = e r  

and the generating function r by 

(3.3) 

(3.4) 

The new coordinates and momenta satisfy the same equal-time commutation relations 
as the old and are Hermitian. 

The old coordinates commute with U and so are unaffected by the transformation. 
Thus 

a ( r )  = i ( r )  (3.5) 

94s) = C(fP (3.6) 
For the field momentum the commutation relation (1.3) and the operator identity 

1 
2! 

er0 e-r = o+[r, o]+-[r, [r, o]]+. . . 

give (Power and Zienau 1959) 

since 

which commutes with r. Thus 

1 
@(r)  = @ ( r )  + - p L ( r ) .  (3.10) 

C 

To transform the particle momenta the commutator [r, is first computed. 
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Equations (3.4) and (3.6) together with the expression (2.28) for the polarization field 
give 

where 

curl a(x) 3 (curl u(r) )r=x.  

(3.11) 

(3.12) 

Since [r, FmaC)] commutes with r, it follows from the identity (3.7) that 

(3.13) 

where the term proportional to a(,$) has, because of the assumed neutrality of the 
molecules, been omitted. The p sum in equation (3.13) gives the extra terms, over and 
above those obtained by Woolley (1971), which are due to the motion of R(5) and 
which vanish if R(6) is a fixed c-number rather than a function of the qp(5). 

Insertion of the expressions (3.10) and (3.13) into equation (3.1) gives the Hamilto- 
nian in terms of the new variables as 

(3.14) 

The fourth term here is, as some long but straightforward manipulation shows, the sum 
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of a kinetic energy term 2, 2,(5, j52(,,/2m,(t, and an interaction energy term 

+$I/ oi,(r, r’)(curl a(r))i(curl’ a(r’))j d3r d3r’ 

(3.15) 

and the ‘reduced’ polarization field by 

(3.17) 

(3.18) 

Here again the order of the operators is prescribed and, analogously to equation (2 .27 ) ,  

(3.19) 

The expression (3.18) for the field p’ ( r )  is similar to that for the ordinary polarization 
fieldp(r), but the 6 integrand has an extra factor of 8, which leads to reduced multipole 
moments (cf equation (3.48) below). The contribution (3.15) to the Hamiltonian will be 
shown in the following subsection to represent the energy in the magnetic induction 
field of the total magnetization field defined in equation (2.38). 
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The longitudinal polarization field p(*)"(r )  of a neutral molecule 5 is given, according 
to equations (2.10) and (2.28), by 

(3.20) 

This fact may be used (Woolley 1971) to eliminate from the Hamiltonian the inter- 
molecular Coulombic energy, since 

(3.21) 

as follows from equation (3.20) and integration by parts. The third term of the 
expression (3.14) for 2 may be decomposed to give 

and addition of the right-hand side of this to the Coulomb energy (3.21) yields 

2.rr (p(5)L(r))2 d3r + 2~ 1 / p ( g ) ( r )  . p""(r) d3r, (3.23) 

because the integral of the scalar product of a longitudinal and a transverse vector field 
vanishes, if the fields drop off sufficiently rapidly at infinity. The first part of the 
expression (3.23) is a sum over self-energies of the individual molecules and its effect is 
important when the multipolar Hamiltonian is used in carrying out the non-relativistic 
mass renormalization programme (Power and Zienau 1959). The second part of the 
expression (3.23) is a contact term which can be neglected unless different molecules 
overlap significantly, since, in contrast to their transverse or longitudinal parts, the 
polarization fields p@'(r)  are of a local character. 

The Hamiltonian 2' may therefore finally be written in its multipolar form as 

5 E#' 

p ( r )  .@r) d3r- m ( r )  . curl a ( r )  d3r I 
+i 11 oi,(r, r')(curl a(r))i(curl' a(r)) ,  d3r d3r' 

(3.24) 
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with the canonical variables being qa(g) and for the material particles and a(r)  and 
$(r) for the transverse electromagnetic field, and where the polarization, magnetiza- 
tion, diamagnetic and reduced polarization fields are defined by equations (2.28), 
(3.16), (3.17) and (3.18), respectively. 

3.2. Heisenberg equations with multipolar Hamiltonian 

It is useful to derive the Heisenberg equations of motion for some of the new variables 
that appear in the multipolar Hamiltonian, as these show how the atomic field equation 
that connects d’ and h may be recovered directly (though only for neutral systems) and 
they clarify the relation between the total magnetization field defined by equation 
(2.38) and the various matter fields that appear in conjunction with curla in the 
expression (3.24) for 2. In addition, the Heisenberg equation for a ( r )  implies, as will 
firstly be shown, that the new field momentum @(r) is essentially the transverse 
displacement vector d’(r), in contrast to the old momentumB(r) which is, apart from a 
factor, the transverse electric field d ( r )  (see equations (1.4) and (2.4)). Thus (Babiker 
eta1 1974) 

gj (r ’ )6 i ( r -r ’ )  d3r’+47rc pj (r ’ )8 i ( r -r ’ )  d3r’ I 
= 4TC2Pi(f) +4Tcp:(r), (3.25) 

since@ is transverse. Hence, in view of equations (1.4) and (2.31), 

(3.26) 

This may be inferred from equation (3.10) also. It follows that the multipolar 
Hamiltonian, when written in terms of the electromagnetic fields rather than the vector 
potential and its conjugate momentum, becomes 

- I p ( r )  . d’(r) d3r - I m ( r )  . b(r)  d3r 

++ 11 oi,(r, r’)bj(r)bj(r’) d3r d3r’ 

(3.27) 
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It is noteworthy that it is d' rather than e l  that appears in this expression. Although it 
has long been recognized (Power and Zienau 1959, Power 1964) that e' and d' are 
related by the transformation (3.2), the multipolar Hamiltonian has nevertheless often 
been written with e' in place of d* (Woolley 1971, 1975, Babiker et a1 1974, Healy 
1976) and it is stressed here that this procedure is incorrect, since, unless there are no 
charged particles at all present, d' and e* are different field operators and have 
different equations of motion. This point is further emphasized by the Heisenberg 
equation for the new momentum @, which yields the correct atomic field equation 
connecting di and h only if @ is identified with - ( 1/4.rrc)dA. 

If mtotal is defined by 

(3.28) 

then the Heisenberg equation for @ takes the form 

(3.29) 
1 

471. 
&r> = -- curl curl a ( r )  +curl mtotal(r), 

as follows from the canonical commutation relations and integration by parts. 
According to equation (3.26) this may be written 

(3.30) 1 .  
curl h ( r )  =-d'(r) 

C 

where h is given, as before, by equation (2.40). This agrees with the atomic field 
equation (2.39), since there are now no ionic or free electronic currents. It remains to 
be shown, however, that mtotal as defined in terms of the new canonical momenta by 
equation (3.28) is the same as that defined previously, equation (2.38), in terms of the 
velocities. This can readily be done by means of the relation (3.3 1) between the particle 
velocities and the new momenta, 

This relation is the Heisenberg equation of motion for the particle coordinates that 
results from use of the multipolar form of the Hamiltonian, but it can be deduced more 
simply by using equations (2.7) and (3.13). From the equality of the two forms (2.38) 
and (3.28) for mrotal it is now clear that, as mentioned in 0 3.1, the expression (3.15) 
represents the energy in the magnetic induction field of the total magnetization field. It 



294 W P Healy 

should be noted, however, that the corresponding Hamiltonian density cannot be 
written simply as -mtotal(r). b(r) ,  since those terms in mtotal that depend on b occur in 
the Hamiltonian with a factor of 4. This is due to their giving rise to the energy of the 
b-dependent part of mtotal in the field b itself. 

3.3. Internal variables for a two-particle system 

For the purpose of application of the theory it is convenient to introduce a set of internal 
coordinates and momenta so as to separate the internal motion of each aggregate from 
that of its centre of mass. This procedure will be illustrated by consideration of a 
two-particle system (hydrogen atom). The most useful internal coordinate is then 
(Bethe and Salpeter 1957, Schiff 1968) the relative displacement p of the electron (of 
charge -e, mass me, position qe and conjugate momentum Fe) from the proton (of 
charge + e ,  mass mp,  position qp and conjugate momentum Fp). The new dynamical 
variables are the centre of mass and relative coordinates, 

(3.32) 

P = -4p + q e ,  (3.33) 

and the canonically conjugate momenta, 

P = p , + p ,  (3.34) 

(3.35) 

where now the total mass is M =  mp+me. Equations (3.32) to (3.35) constitute a 
further canonical transformation, but one that affects only the particle variables while 
leaving those of the radiation field unaltered. The inverse of this transformation may be 
written 

q - R = - L p  m 
M P 

qe-R  = 3 p  
M 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

Substitution of these expressions in equations (2.28) and (3.16) to (3.18) gives the 
polarization, magnetization, diamagnetic and reduced polarization fields in terms of the 
new variables. Thus 

(3.40) 
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n t ( r ) = ~ [ p x i i 6 l e ~ s ( r - R + B ' p  2mpc " 1  M d e +  / o l z (  0"s r-R+d"p " 1  M d0pXi i  1 
1 

- ' [ p  2m,c x i i  jn e 2 6 ( r - R - e m , p )  M d e  

+jol B % 6 ( r - R - 0 2 p  " 1  M d e p x i i  1 (3.41) 

(3.42) 

The atomic multipole moments can be obtained by series expansion of the delta 
functions and by performance of the 8 integration. With the self-energy term being 
omitted, the Hamiltonian for the radiation field interacting with a single atom then 
takes the form 

(3.45) 

(3.47) 
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and are all Hermitian. The reduced mass that appears in the atomic part of the 
Hamiltonian is given by 

(3.49) 

and the relative angular momentum that appears in the expression for the magnetic 
multipole moments by 

i = p x 6 .  (3.50) 

The notation used in equation (3.44) for the partial derivatives means that 

b i ( ~ )  Ca, = Z j b i ( ~ )  = a j b i ( ~ )  = [ajbi(r)]r=R. (3.51) 

If me remains constant but m,,, and hence M, tends to infinity, the Hamiltonian 
(3.44) reduces to 

because, from equations (3.35) and (3.49), *+-Fe and p + m e .  It follows also from 
equation (3.37) that now 

p = q e - R .  (3.53) 

2 is then independent of and is of the form appropriate to an electron moving in the 
Coulomb field of a proton fixed at R, which is now taken to be a c-number. Moreover, 
the multipole moment operators then have their familiar forms, 

e 
, = - - p ,  I ~ P I Z  , * . . Pi, r !  p?? 1112 ... I ,  (3.54) 

the operator for the electron's angular momentum about the fixed proton being 

(3.55) 

(3.56) 

I'= (qe - R )  XPe. (3.57) 
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The order of the operators in the expression (3.55) for the magnetic 2'-pole moments is 
in agreement with that obtained by Raab (1975), who in a semiclassical treatment used 
a symmetrized (in p . a and a. p )  but non-Coulomb gauged Hamiltonian. 

If the masses of the two particles are finite and equal, so that the centre of mass is 
midway between them, then all the even-order electric and all the odd-order magnetic 
multipole operators vanish, as do the diamagnetic moment operators o'',~) with r + s 
odd. 

Appendix 

The three distribution relations that were used in 0 2.3 to obtain the expressions for the 
total charge density in terms of the true and the polarization charge densities and for the 
total current density in terms of the true, the polarization and the total magnetization 
current densities are listed here for convenience. If the label of the aggregate 5 to which 
particle cy belongs is suppressed, then the three relations are as follows: 

1 a 
at 

&,a $(r - q,) = Z@$(r - R )  + - (4, - R ) j  6$(r  - R - 8(qp - R ) )  d e  

In the classical theory, where the q, are c-numbers, these relations are quite generally 
valid as kinematical identities (Power and Thirunamachandran 197 1). In the quantum 
theory the order of the operators as given in equations (A.2) and (A.3) must be adhered 
to and, even so, the validity of these two equations is more restricted than in the classical 
case. This is because the usual formula for the derivative of a function of a function is 
not necessarily true in the operator calculus-not even, except with certain assumptions 
as to the nature of the commutator of R and h, in the symmetrized form 
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Equations (A.2) and (A.3) can be shown to be consequences of the Heisenberg 
equation of motion when the 'central point' R, whose precise definition could be left 
unspecified in the classical treatment, is taken for definiteness to be the centre of mass of 
the aggregate to which particle LY belongs. The derivations of these equations along 
these lines are rather lengthy and will not be entered upon here; the proofs are similar to 
their classical counterparts except that due regard must be had for the order of 
non-commuting operators and the time derivatives must be calculated from the 
Heisenberg equation (1.5), it being simplest for this purpose to use the minimal- 
coupling form (3.1) of the Hamiltonian %. This method shows that equations (A.2) and 
(A.3) are valid as dynamical relations for the particular dynamical system under 
consideration. On the other hand, the proof of equation (A. 1) as given by Power and 
Thirunamachandran (197 1) for the classical case holds equally well in the quantum 
theory and this equation is consequently a kinematical identity. 
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